Positive solutions for a class of semilinear two-point boundary value problems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions

In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...

متن کامل

Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...

متن کامل

Triple Positive Solutions for a Class of Two-point Boundary-value Problems

We obtain sufficient conditions for the existence of at least three positive solutions for the equation x′′(t) + q(t)f(t, x(t), x′(t)) = 0 subject to some boundary conditions. This is an application of a new fixed-point theorem introduced by Avery and Peterson [6].

متن کامل

Positive Solutions for a Class of Singular Boundary-value Problems

Using regularization and the sub-super solutions method, this note shows the existence of positive solutions for singular differential equation subject to four-point boundary conditions.

متن کامل

Positive Solutions for a Class of Nonresonant Boundary-value Problems

This paper concerns the existence and multiplicity of positive solutions to the nonresonant second-order boundary-value problem Lx = λw(t)f(t, x). We are interested in the operator Lx := −x′′ + ρqx when w is in Lp for 1 ≤ p ≤ +∞. Our arguments are based on fixed point theorems in a cone and Hölder’s inequality. The nonexistence of positive solutions is also studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1992

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700030331